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When a crystal deforms plastically, sources within, such as the Frank–Read source, emit dislocations,
which then glide in response to the applied stress. As the dislocations move away from the source, they
may encounter an obstacle, for example a grain boundary, impurity atom or locked dislocation, which
they cannot overcome. As more dislocations are emitted, they ’pile up’ near the obstacle, until their
own stress fields acting back on the source prevent more dislocations from being produced, unless the
external applied stress is increased. The properties of these pile-ups strongly influence the deformation
of the crystal as a whole giving rise to the Hall–Petch effect [E. Hall, Proc. Phys. Soc. B 64 (1951) 747–753,
N. Petch, J. Iron and Steel Institute 173 (1953) 25–28.] relating yield strength to grain size. In this paper
we investigate how the observed strong variation of elastic constants as functions of temperature affects
the strength of interactions between dislocations, and mechanisms of plastic deformation of iron at ele-
vated temperatures. We find that the observed severe softening of the tetragonal shear modulus C0 at
high temperature gives rise to a drastic reduction in the repulsion between parallel like edge dislocations,
and hence to a greatly increased number of dislocations in pile-ups, especially those in the h100i(001)
configuration. The associated increase in plastic strain will lead in turn to a conspicuous reduction in ten-
sile strength as C0 falls. The phenomenon is inherently anisotropic, and this work underlines the impor-
tance of including anisotropic elastic effects when modelling Fe at high temperatures.

� 2009 Published by Elsevier B.V.
1. Introduction

Crystalline bcc iron has cubic symmetry, and its elastic constant
tensor is characterized by three independent parameters C11, C12

and C44 which appear in Hooke’s law:

rmn ¼ CmnipðC11;C12; C44Þuip; ð1Þ

where r and u are the stress and strain tensors respectively. Mate-
rial properties are encoded in linear combinations of these funda-
mental parameters, for example the bulk modulus B = (C11 + 2C12)/
3 and two independent shear moduli, C44 and C0 = (C11 � C12)/2,
describing the crystal’s resistance to trigonal and tetragonal shear
respectively. If elastic isotropy is assumed, these two shear moduli
are taken equal, and only two remaining parameters are required to
characterize the elastic properties of the crystal. Fig. 1 shows the
variation with temperature of the elastic constants C11 and C12,
the bulk modulus B and the two independent shear moduli [1]. Even
at room temperature, the two shear moduli are far from equal, and
the discrepancy grows with temperature. Crucially, the C0 modulus
exhibits an extreme softening as the temperature approaches that
of the a–c phase transition. This experimentally observed behaviour
agrees in principle with model calculations by Hasegawa et al. [2,3].
Elsevier B.V.
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These calculations actually show C0 reaching zero at the Curie tem-
perature, which results from the approximation used (mean-field
one-lattice-site treatment). Softening at the Curie point is a precur-
sor to the structural phase transition, and the data show a deviation
from smooth behaviour above around 750 �C. The a–c transition is
displacive, and naively one expects the shear modulus in the direc-
tion conducive to the transition to vanish there. In practice, thermal
fluctuations and the volume-per-atom difference between the
phases drive the lattice over the effective energy barrier to the c
phase, and C0 need not actually reach zero.

In the next section we demonstrate the importance of elastic
anisotropy of bcc iron by considering the phonon spectrum at ele-
vated temperature, and comparing the results of anisotropic elastic-
ity theory with those of the isotropic approximation. In subsequent
sections we investigate the effect of anisotropy on dislocation inter-
action energies and pile-ups [4–6], and in the final section we apply
an extension [7] of the analysis of [6] to Fe at high temperature,
which gives an expression to estimate the plastic displacement
occurring during the equilibriation of a Frank–Read source.

2. Phonons and the soft mode

A complementary description of the elastic behaviour of a solid
is given by its phonon frequencies. These are determined by solv-
ing the elastic wave equations
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Fig. 1. Elastic moduli of single crystal a-Fe. Experimental data points are taken from
Ref. [1]. The bulk modulus B and the trigonal shear modulus C44 remain significantly
above zero, but the tetragonal shear modulus C0 becomes close to zero at high
temperatures. Isotropic elasticity does not distinguish the two moduli C44 and C0 ,
and is clearly a poor approximation to the true elastic behaviour of Fe at these
temperatures.

68 S.P. Fitzgerald, S.L. Dudarev / Journal of Nuclear Materials 386–388 (2009) 67–70
q
@2ui

@t2 ¼ Cijkl
@2uk

@xj@xl
ð2Þ

for the displacement vector uk, where q is the mass density of the
material. Plane wave solutions u = eexp i [k � x �xt] satisfy the
eigenvalue equation

½�qx2dik þ Cijklkjkl�ek ¼ 0; ð3Þ

prescribing the frequencies x in terms of the wavevector k, the
elastic moduli C and the mass density q (e is the polarization vec-
tor). Fig. 2 shows the values taken by the three solutions for qx2

in iron at 25 �C, 900 �C, and the isotropic approximation obtained
by setting C0 = C44 at 900 �C. In the isotropic approximation the pho-
Fig. 2. Surfaces representing phonon frequency-squared qx2 as a function of
wavevector direction. Top to bottom: the three independent eigenvalues; left to
right: 25 �C, 900 �C, and the isotropic approximation at 900 �C.
non frequencies are independent of the direction of k, and two of
the frequencies are degenerate, corresponding to the two transverse
phonon modes. When anisotropy is taken into account, the clear
distinction between the transverse and longitudinal modes can no
longer be made. Moreover, a pronounced directionality is ex-
pressed, which becomes more extreme with increasing tempera-
ture. As the transition temperature is approached, frequencies
corresponding to displacements in certain directions (h110i-type)
tend towards zero, indicating the emergence of a soft mode [3]. In
the limit, displacements in these directions can be effected at no en-
ergy cost. This is inherently anisotropic behaviour, and although the
large-scale elastic properties of a polycrystalline sample could still
be treated as isotropic, by averaging over grain orientations, the
plastic evolution of microstructure occurs within single grains, and
hence must be treated using full anisotropic elasticity.

3. Elastic fields of straight dislocations

A general expression for the (two-dimensional) strain field at r
created by an infinite straight dislocation passing through the ori-
gin is [8]:

uip ¼
bs

2pjrj ½�MpSis þ NpðNNÞ�1
ik f4pBks þ ðNMÞkrSrsg�; ð4Þ

where r is the vector from the dislocation to the field point at which
the stress is evaluated, b is the dislocation’s Burgers’ vector, M =
r/jrj and N = t ^M. The bracketed quantities are defined as

ðABÞjk ¼ cijklAiBl; ð5Þ

for any two vectors A, B, and the two matrices B and S depend only
the elastic constants and the line direction t (see [7,8]). The stress
field rmn follows from Hooke’s law (1). The hydrostatic pressure is
given by �Tr(rmn)/3, and is shown in Fig. 3 for a h100i(001)-type
edge dislocation in iron at 900 �C. The circles predicted by the iso-
tropic approximation are shown in each case for comparison. The
differences are striking: when anisotropic effects are included, a lo-
cal minimum appears at the position of the maximum pressure as
calculated in the isotropic approximation. Also note the small re-
gions of inverted pressure in the anisotropic case.

The elastic strain energy of two similar parallel edge disloca-
tions may also be computed from elasticity theory:
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Fig. 3. Hydrostatic pressure fields surrounding a long straight h100i-type edge
dislocation in Fe at 900 �C (right). Left: isotropic calculation (arbitrary units).
Regions of positive and negative pressure are indicated.
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Fig. 4. Contours of equal angular interaction energy between two like parallel
h100i-type edge dislocations in Fe (dislocation lines into page; source dislocation
fixed at extreme left, contours represent field dislocation moving between h = � p/2
at fixed separation.). Outermost solid curve 25 �C, to innermost solid curve 900 �C
(arbitrary units). Dashed curves see text. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.).
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Fig. 5. Top: A Frank-Read source emitting dislocations into a pile-up. The shaded
box represents the obstacle, and the red (lighter) segment is the source. Interme-
diate configurations are shown as dashed lines. Bottom: A side-on view showing the
dislocations’ common Burgers’ vector and the direction in which the applied stress
acts. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.).
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where the integral is taken over the entirety of the body. The diag-
onal terms in the product represent the elastic self-energies, whilst
the two cross terms correspond to the interaction energy. Since the
stress and strain fields are proportional to 1/r, the total energy con-
tains a logarithmic singularity corresponding to an inner cutoff near
the dislocation core, where linear elasticity does not apply, and a
term proportional to the logarithm of the size of the body. These
may both be absorbed into the self-energies, and the interaction en-
ergy is well-behaved. It separates into a term depending only on the
dislocations’ separation, and one depending only on their relative
angular orientation, which is shown in Fig. 4, for two h100i(001)
dislocations. One dislocation is located at the extreme left of the
plot, whilst the other moves around a semicircle from the positive
to negative y axis (the energy is symmetric in x). The curve marked
A shows the result when the elastic constants take an ’extreme’ va-
lue, with very low C0 (C12 = 1.22, C44 = 0.900, C0 = 0.06). The curve
marked B was calculated using these adjusted constants, but with
C44 and C0 replaced by their average, corresponding to the isotropic
approximation. The disparity between these curves indicates the
failure of isotropic elasticity: in no way can the anisotropic interac-
tion effects be accounted for by averaging over orientations. By con-
sidering all directions as equivalent, the isotropic approximation
fails to capture the effect of the modulus C0 sharply falling toward
zero. The position of minimum interaction energy is the same in
both cases, namely that where the separation vector of the two dis-
locations is orthogonal to their Burgers’ vector. This configuration
allows for the most effective cancellation of the pressure fields, with
the area of greatest positive pressure due to one dislocation aligned
with that of greatest negative pressure due to the other. However,
the configuration of maximal interaction energy as calculated in
the isotropic approximation, corresponding to the dislocations shar-
ing a common slip plane, becomes a local minimum once aniso-
tropic effects are included. At high temperatures the discrepancy
can reach a factor of five. This is directly related to the softening
of C0, and has important consequences for the plastic behaviour of
iron and iron-based steels and alloys.

4. Dislocation pile-ups

As mentioned in the introduction, similar dislocations gliding
under stress on a common glide plane pile up when the leading
dislocation approaches an obstacle it cannot overcome. The dislo-
cations’ mutual repulsion ensures that the array does not collapse,
and this provides the crystal’s resistance to further deformation.
An analytical model developed in 1951 [6] quantitatively describes
the elastic and geometric properties of pile-ups in terms of the ap-
plied stress magnitude s0 and a parameter A, which encodes the
magnitude of the inter-dislocation force:

f ¼ A
jrj : ð7Þ

If n like parallel dislocations are piled up against a similar disloca-
tion locked at the origin (Fig. 5), we can define an nth order polyno-
mial g(x) such that its roots coincide with the positions of the
dislocations:

gðxÞ ¼ ðx� x1Þðx� x2Þ . . . ðx� xnÞ: ð8Þ

Differentiating lng gives

g0ðxÞ
gðxÞ ¼

Xn

i¼1

1
x� xi

¼ total force at x
A

: ð9Þ

Subtracting the force due to the jth dislocation, setting x = xj and
adding the forces A/xj and s0 due to the immobile dislocation at
the origin and the applied stress respectively, we arrive at the fol-
lowing equilibrium conditions to be satisfied at each xj:

gðxjÞ ¼ 0; A lim
x!xj

g0ðxÞ
gðxÞ �

1
x� xj

� �
þ A

xj
� s0 ¼ 0: ð10Þ

These correspond to the differential equation

Axg00 þ 2g0ðA� s0xÞ þ Axqðn; xÞg ¼ 0; ð11Þ

where q must be chosen so that there is an nth order polynomial
solution for g(x). If we take q = n/x and rescale x into units where
A = 2s0, it becomes the associated Laguerre equation with parame-
ter 1, and the dislocations’ positions are given by

fxig ¼
A

2s0
fpig; ð12Þ

where {pi} are the n roots of the first derivative of the (n + 1)th La-
guerre polynomial. Clearly, increasing the applied stress or reducing
the inter-dislocation force causes the pile-up to compress more, and
vice versa.

The parameter A may be determined by comparing the above
definition with the expression obtained from the Peach–Koehler
formula [9] for the force on a dislocation with line element t, Bur-
gers’ vector b in any stress field r:

f PK ¼ t ^ ðr � bÞ: ð13Þ

Using the expression for the stress field experienced by a disloca-
tion ’1’ at r, due a dislocation ’2’ situated at r0 gives
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Fig. 6. Values taken by the inter-dislocation force parameter for the four principle
dislocation configurations in bcc iron vs. temperature.
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f 12 ¼ t1 ^ ðr2ðr � r0Þ � b1Þ; ð14Þ

which in general has a component in both glide and climb direc-
tions. Since we are considering only glide, we may select this com-
ponent and identify A.

In general, A cannot be computed explicitly, since the integrals
in the definition of the matrices S and B [8] must be evaluated
numerically. However in the h100i(001) case the result is

A100 ¼
C12 þ C 0

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44C 0

ðC12 þ C44 þ C0ÞðC12 þ 2C 0Þ

s

�
ffiffiffiffiffi
C0
p

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C12C44

C12 þ C44

s
at smallC 0: ð15Þ

At high temperatures, A100 is proportional to
ffiffiffiffiffi
C0
p

, since C12 and C44

both vary slowly with temperature, while C0 decreases sharply as
the temperature approaches that of the phase transition. The varia-
tion with temperature of the values taken by A for the four main
dislocation configurations in bcc iron is shown in Fig. 6. The relative
magnitude of A for the various configurations behaves in the same
way as the straight dislocation strain energy, calculated in [10].
They all decrease with temperature, with the h100i(001) falling
the most steeply by virtue of its

ffiffiffiffiffi
C0
p

dependence. For the pile-up,
this translates into a reducing resistance to compression at a given
applied stress, especially for the 100(001) and 111ð11 �2Þ orienta-
tions. Indeed, if C0 were to reach zero, the h100i(001) pile-up would
collapse completely. In the isotropic approximation C0 ? C44

A100 !
C44

4p
C12 þ C44

C12 þ 2C44
; ð16Þ

and the high-temperature collapse is overlooked.

5. Equilibriation of sources and plastic displacement

The authors [7] recently extended the model of [6] to quantify
the plastic displacement occurring during the equilibriation of a
dislocation source. Since the Frank–Read source can be thought
of as a segment of dislocation line pinned at both ends, we can re-
gard the source as another dislocation with the same Burgers’ vec-
tor as the others (a typical source has initial length of order 104b, so
this treatment is reasonable) and use the same solution as in the
previous section. The solution for n mobile dislocations is now
g ¼ L0nþ2, and the positions are given as before by the scaled zeros
of g. There are n + 1 zeros in the above, the first n of which are
the equilibrium coordinates of the mobile dislocations, and the
greatest root is the position of the source, which is by definition
fixed at some x0 (related to the grain size or average obstacle spac-
ing), so for given A, we can find a consistent relation between the
imposed force s0 and n. Furthermore, we can determine the total
plastic displacement d at a given s0 by summing the distances trav-
elled by the n dislocations from the source to their equilibrium
positions, with the result [7]

d � 3jbjx0s0

8A
or

s0 /
Ad
jbjx0

ð17Þ

if the plastic displacement is specified. The second line indicates
that the applied stress required to produce a given plastic displace-
ment is proportional to A, and hence for a pile-up of h 100i(001)-
type dislocations, to

ffiffiffiffiffi
C0
p

. If C0 were to reach zero, the plastic dis-
placement at any applied stress would be infinite, corresponding
to the collapse of the crystal (as would a zero shear modulus alone).
This behaviour is of course unphysical, since the phase transition
intervenes and Fe remains solid until its melting point.

The behaviour of the A parameters (Fig. 6) indicates that the
tensile strength of iron, defined by some critical value of the plastic
strain, is expected to fall sharply above around 700 �C. This behav-
iour has been observed in ferritic-martensitic steels, see for exam-
ple Ref. [11].
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